Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events.

نویسندگان

  • R Harun
  • L Ruban
  • M Matin
  • J Draper
  • N M Jenkins
  • G C Liew
  • P W Andrews
  • T C Li
  • S M Laird
  • H D M Moore
چکیده

BACKGROUND An effective embryonic-maternal interaction is crucial for successful human pregnancy. Failure of this process is a major cause of infertility and can lead to placental dysfunction resulting in recurrent miscarriage, fetal retardation and pre-eclampsia. Research is severely constrained by ethical and practical considerations; therefore, we aimed to generate cytotrophoblast stem (CTBS) cell lines from human embryonic stem cells (HESCs). METHOD Beta-HCG was used as a marker of viable trophoblast cells. In defined culture, embryoid bodies were generated from HESCs and selected for trophoblast enrichment by rounds of cellular aggregation and disaggregation. Distinct CTBS cell lines were isolated and characterized. Spheroid cytotrophoblast bodies were generated and their interaction with luteal-phase endometrial stroma was analysed by real-time image analysis. RESULTS Three CTBS cell lines were derived, which were maintained in the absence of residual HESCs, fibroblast feeder cells or extracellular matrix. CTBS cells displayed typical cytotrophoblast and syncytiotrophoblast characteristics and exhibited further differentiation to invasive endovascular cell phenotype. One cell line was generated with constitutive expression of enhanced green fluorescent protein (eGFP). Spheroid trophoblast bodies mimicked closely the early invasive stages of implantation when incubated with human endometrial stromal preparations in vitro. CONCLUSION These human CTBS cell lines are a significant new model for investigating human placentation and may have considerable potential in cell therapy applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles

Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Maintenance of horse embryonic stem cells in different conditions

Embryonic stem cells (ESCs) are originally derived from the ICM of blastocysts and are characterized by their ability to self-renew and their pluripotencies. Only a few reports have been published on ESC isolations and line establishment in animals, even fewer in horses. However, it is still important to isolate equine ESCs for animal biotechnology and therapeutic applications. In the present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human reproduction

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2006